Divergence-Based One-Class Classification Using Gaussian Processes

نویسندگان

  • Paul Bodesheim
  • Erik Rodner
  • Alexander Freytag
  • Joachim Denzler
چکیده

We present an information theoretic framework for one-class classification, which allows for deriving several new novelty scores. With these scores, we are able to rank samples according to their novelty and to detect outliers not belonging to a learnt data distribution. The key idea of our approach is to measure the impact of a test sample on the previously learnt model. This is carried out in a probabilistic manner using Jensen-Shannon divergence and reclassification results derived from the Gaussian process regression framework. Our method is evaluated using well-known machine learning datasets as well as large-scale image categorisation experiments showing its ability to achieve state-of-the-art performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Negative Selection Based Data Classification with Flexible Boundaries

One of the most important artificial immune algorithms is negative selection algorithm, which is an anomaly detection and pattern recognition technique; however, recent research has shown the successful application of this algorithm in data classification. Most of the negative selection methods consider deterministic boundaries to distinguish between self and non-self-spaces. In this paper, two...

متن کامل

Multi-class Classification with Dependent Gaussian Processes

We present a novel multi-output Gaussian process model for multi-class classification. We build on the formulation of Gaussian processes via convolution of white Gaussian noise processes with a parameterized kernel and present a new class of multi-output covariance functions. The latter allow for greater flexibility in modelling relationships between outputs while being parsimonious with regard...

متن کامل

One-Class Classification with Gaussian Processes

Detecting instances of unknown categories is an important task for a multitude of problems such as object recognition, event detection, and defect localization. This paper investigates the use of Gaussian process (GP) priors for this area of research. Focusing on the task of one-class classification for visual object recognition, we analyze different measures derived from GP regression and appr...

متن کامل

Towards Indefinite Gaussian Processes

Gaussian processes (GPs) enable probabilistic kernel-machines with remarkable modeling efficacy and GPML toolbox facilitates a widespread use by practitioners and researchers. Many modern applications demand non-metric (dis)similarities. As a result, Mercer’s condition for positive semidefiniteness is violated. Through a simple text categorization example that involves a KL-divergence based ker...

متن کامل

Detection of Fake Accounts in Social Networks Based on One Class Classification

Detection of fake accounts on social networks is a challenging process. The previous methods in identification of fake accounts have not considered the strength of the users’ communications, hence reducing their efficiency. In this work, we are going to present a detection method based on the users’ similarities considering the network communications of the users. In the first step, similarity ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012